The Cryosphere (Aug 2022)

Comparison of manual snow water equivalent (SWE) measurements: seeking the reference for a true SWE value in a boreal biome

  • M. Beaudoin-Galaise,
  • S. Jutras

DOI
https://doi.org/10.5194/tc-16-3199-2022
Journal volume & issue
Vol. 16
pp. 3199 – 3214

Abstract

Read online

Manual measurement of snow water equivalent (SWE) is still important today for several applications such as hydrological model validation. This measurement can be performed with different types of snow tube sampler or by a snow pit. Although these methods have been performed for several decades, there is an apparent lack of information required to have a consensus regarding the best reference for “true” SWE. We define and estimate the uncertainty and measurement error of different methods of snow pits and snow samplers used in a boreal biome. Analysis was based upon measurements taken over five consecutive winters (2016–2020) from the same flat and open area. This study compares two snow pit methods and three snow samplers. In addition to including the Standard Federal sampler (SFS), this study documents the first use of two new large diameter samplers, the Hydro-Québec sampler (HQS) and Université Laval sampler (ULS). Large diameter samplers had the lowest uncertainty (2.6 % to 4.0 %). Snow pit methods had higher uncertainty due to instruments (7.1 % to 11.4 %), close to that of the SFS (mean = 10.4 %). Given its larger collected snow volume for estimating SWE and its lower uncertainty, we posit that ULS represents the most appropriate method of reference for “true” SWE. By considering ULS as the reference in calculating mean bias error (MBE), different snow pit methods overestimated SWE by 16.6 % to 26.2 %, which was much higher than SFS (8.4 %). This study suggests that large diameter samplers are the best method for estimating “true” SWE in a boreal biome.