AIMS Molecular Science (Feb 2017)
The potential role of transforming growth factor beta family ligand interactions in prostate cancer
Abstract
The transforming growth factor beta (TGF-β) family plays an important role in embryonic development and control of the cell cycle. Members of the TGF-β family have pleiotropic functions and are involved in both the inhibition and progression of various cancers. In particular, deregulation of the TGF-β family has been associated with prostate cancer, as both a mechanism of disease progression and a possible therapeutic target. This review concentrates on the TGF-βs, activins and inhibins, bone morphogenetic proteins and NODAL and their connection to prostate cancer. Whilst most studies examine the family members in isolation, there are multiple interactions that may occur between members which can alter their function. Such interactions include ligand competition for receptor binding and shared intracellular pathways such as the Mothers against decapentaplegic (SMAD) proteins. Another mechanism for interaction within the TGF-β family is facilitated by their dimeric structure; heterodimers can form which exhibit different functional capabilities to their homodimeric counterparts. The potential formation of TGF-β family heterodimers has not been well examined in prostate cancer. The multiple methods of interrelations between members highlights the need for gross analysis of the TGF-β family and related factors in association with prostate cancer, in order to discover possible future avenues for TGF-β based diagnosis and treatments of the disease. This review describes the role of the TGF-β family of proteins in cancer and, in particular, prostate cancer. After a brief overview, the role of individual members of the family is considered and how these members may be involved in prostate cancer growth is discussed. The review highlights the complex interactions that occur between family members and that may contribute to the progression of prostate cancer.
Keywords