International Journal of Molecular Sciences (Dec 2022)

Involvement of Intestinal Microbiota in Adult Neurogenesis and the Expression of Brain-Derived Neurotrophic Factor

  • Nishtha Agnihotri,
  • M. Hasan Mohajeri

DOI
https://doi.org/10.3390/ijms232415934
Journal volume & issue
Vol. 23, no. 24
p. 15934

Abstract

Read online

Growing evidence suggests a possible involvement of the intestinal microbiota in generating new neurons, but a detailed breakdown of the microbiota composition is lacking. In this report, we systematically reviewed preclinical rodent reports addressing the connection between the composition of the intestinal microbiota and neurogenesis and neurogenesis-affecting neurotrophins in the hippocampus. Various changes in bacterial composition from low taxonomic resolution at the phylum level to high taxonomic resolution at the species level were identified. As for neurogenesis, studies predominantly used doublecortin (DCX) as a marker of newly formed neurons or bromodeoxyuridine (BrdU) as a marker of proliferation. Brain-derived neurotrophic factor (BDNF) was the only neurotrophin found researched in relation to the intestinal microbiota. Phylum Actinobacteria, genus Bifidobacterium and genus Lactobacillus found the strongest positive. In contrast, phylum Firmicutes, phylum Bacteroidetes, and family Enterobacteriaceae, as well as germ-free status, showed the strongest negative correlation towards neurogenesis or BDNF mRNA expression. Age, short-chain fatty acids (SCFA), obesity, and chronic stress were recurring topics in all studies identified. Overall, these findings add to the existing evidence of a connection between microbiota and processes in the brain. To better understand this interaction, further investigation based on analyses of higher taxonomic resolution and clinical studies would be a gain to the matter.

Keywords