Alexandria Engineering Journal (May 2022)

Synthesis of titanium dioxide nanoparticle by means of discharge plasma over an aqueous solution under high-pressure gas environment

  • Wahyudiono,
  • Hiroki Kondo,
  • Siti Machmudah,
  • Hideki Kanda,
  • Yaping Zhao,
  • Motonobu Goto

Journal volume & issue
Vol. 61, no. 5
pp. 3805 – 3820

Abstract

Read online

In this study, the utilization of an electric field generated by the high voltage discharge plasma over a liquid water surface containing glycine compound to synthesize titanium dioxide (TiO2) nanoparticles was demonstrated. The experiments were conducted in a batch-type system with applied voltages ranging from 18.6 − 23.4 kV under various pressurized gases at room temperature. The results indicated that the applied voltages, applied pulse numbers, and pulsed repetition rates had a significant influence on the decomposition reaction of glycine compounds and titanium rod electrode erosion. The ultraviolet − visible (UV − vis) spectra showed that titanium dioxide nanoparticles could be observed in each solution product, and most of them were brookite-type structures. According to the HRTEM images, TiC was also produced as a nanoparticle product. Based on the experimental results, this process is applicable and could result in advanced metal-based nanoparticle synthesis technology.

Keywords