BMC Cancer (Feb 2010)

Mammographic density and markers of socioeconomic status: a cross-sectional study

  • Moss Sue M,
  • Wark Petra A,
  • Stegeman Bernardine H,
  • Walker Kate,
  • Aitken Zoe,
  • McCormack Valerie A,
  • dos Santos Silva Isabel

DOI
https://doi.org/10.1186/1471-2407-10-35
Journal volume & issue
Vol. 10, no. 1
p. 35

Abstract

Read online

Abstract Background Socioeconomic status (SES) is known to be positively associated with breast cancer risk but its relationship with mammographic density, a marker of susceptibility to breast cancer, is unclear. This study aims to investigate whether mammographic density varies by SES and to identify the underlying anthropometric, lifestyle and reproductive factors leading to such variation. Methods In a cross-sectional study of mammographic density in 487 pre-menopausal women, SES was assessed from questionnaire data using highest achieved level of formal education, quintiles of Census-derived Townsend scores and urban/rural classification of place of residence. Mammographic density was measured on digitised films using a computer-assisted method. Linear regression models were fitted to assess the association between SES variables and mammographic density, adjusting for correlated variables. Results In unadjusted models, percent density was positively associated with SES, with an absolute difference in percent density of 6.3% (95% CI 1.6%, 10.5%) between highest and lowest educational categories, and of 6.6% (95% CI -0.7%, 12.9%) between highest and lowest Townsend quintiles. These associations were mainly driven by strong negative associations between these SES variables and lucent area and were attenuated upon adjustment for body mass index (BMI). There was little evidence that reproductive factors explained this association. SES was not associated with the amount of dense tissue in the breast before or after BMI adjustment. The effect of education on percent density persisted after adjustment for Townsend score. Mammographic measures did not vary according to urban/rural place of residence. Conclusions The observed SES gradients in percent density paralleled known SES gradients in breast cancer risk. Although consistent with the hypothesis that percent density may be a mediator of the SES differentials in breast cancer risk, the SES gradients in percent density were mainly driven by the negative association between SES and BMI. Nevertheless, as density affects the sensitivity of screen-film mammography, the higher percent density found among high SES women would imply that these women have a higher risk of developing cancer but a lower likelihood of having it detected earlier.