Scientific Reports (Sep 2024)
The adaptive evolution of Quercus section Ilex using the chloroplast genomes of two threatened species
Abstract
Abstract Chloroplast (cp) genome sequences have been extensively used for phylogenetic and evolutionary analyses, as many have been sequenced in recent years. Identification of Quercus is challenging because many species overlap phenotypically owing to interspecific hybridization, introgression, and incomplete lineage sorting. Therefore, we wanted to gain a better understanding of this genus at the level of the maternally inherited chloroplast genome. Here, we sequenced, assembled, and annotated the cp genomes of the threatened Quercus marlipoensis (160,995 bp) and Q. kingiana (161,167 bp), and mined these genomes for repeat sequences and codon usage bias. Comparative genomic analyses, phylogenomics, and selection pressure analysis were also performed in these two threatened species along with other species of Quercus. We found that the guanine and cytosine content of the two cp genomes were similar. All 131 annotated genes, including 86 protein-coding genes, 37 transfer RNA genes, and 8 ribosomal RNA genes, had the same order in the two species. A strong A/T bias was detected in the base composition of simple sequence repeats. Among the 59 synonymous codons, the codon usage pattern of the cp genomes in these two species was more inclined toward the A/U ending. Comparative genomic analyses indicated that the cp genomes of Quercus section Ilex are highly conserved. We detected eight highly variable regions that could be used as molecular markers for species identification. The cp genome structure was consistent and different within and among the sections of Quercus. The phylogenetic analysis showed that section Ilex was not monophyletic and was divided into two groups, which were respectively nested with section Cerris and section Cyclobalanopsis. The two threatened species sequenced in this study were grouped into the section Cyclobalanopsis. In conclusion, the analyses of cp genomes of Q. marlipoensis and Q. kingiana promote further study of the taxonomy, phylogeny and evolution of these two threatened species and Quercus.
Keywords