Nuclear Engineering and Technology (Sep 2020)

Lab scale electrochemical codeposition experiments for comparison to computational predictions

  • Philip Lafreniere,
  • Chao Zhang,
  • Michael Simpson,
  • Edward D. Blandford

Journal volume & issue
Vol. 52, no. 9
pp. 2025 – 2033

Abstract

Read online

Signature-based safeguards (SBS) is being developed to assist tradition nuclear material accountancy methods in tracking material in pyroprocessing facilities. SBS involves identifying off-normal scenarios that would result in improper movement of material in a pyroprocessing facilities and determining associated sensor response signatures. SBS investigations are undertaken in the computational space utilizing an electrochemical transport code known as enhanced REFIN with anodic dissolution (ERAD) to calculate the affect of off-normal conditions in the electrorefiner (ER) on material movement. Work is undertaken to experimentally validate the predictions and assumptions made by ERAD for off-normal occurrences. These experiments were undertaken on a benchtop scale and involved operating an electrochemical cell at 10 separate current densities for constant current operations to deposit U and Gd at a W cathode. These experiments were then modeled using ERAD to compare calculated predictions versus analytical experimental results it was found. It was discovered both the experimental and calculated results reflect a trend of increased codeposition of U and Gd with increasing current density. ERAD was thus demonstrated to be useful for predicting trends from anomalous operation but will require further optimization to be utilized as a quantitative design tool.

Keywords