SciPost Physics (Aug 2023)

Search for ultralight axion dark matter in a side-band analysis of a ${}^{199}$Hg free-spin precession signal

  • C. Abel, N. J. Ayres, G. Ban, G. Bison, K. Bodek, V. Bondar, E. Chanel, C. B. Crawford, M. Daum, B. Dechenaux, S. Emmenegger, P. Flaux, W. C. Griffith, P. G. Harris, Y. Kermaidic, K. Kirch, S. Komposch, P. A. Koss, J. Krempel, B. Lauss, T. Lefort, Prajwal MohanMurthy, Oscar Naviliat Cuncic, D. Pais, F. M. Piegsa, Guillaume Pignol, M. Rawlik, D. Ries, Stephanie Roccia, D. Rozpedzik, Philipp Schmidt-Wellenburg, N. Severijns, Y. V. Stadnik, J. A. Thorne, A. Weis, E. Wursten, Jacek Zejma, Geza Zsigmond

DOI
https://doi.org/10.21468/SciPostPhys.15.2.058
Journal volume & issue
Vol. 15, no. 2
p. 058

Abstract

Read online

Ultra-low-mass axions are a viable dark matter candidate and may form a coherently oscillating classical field. Nuclear spins in experiments on Earth might couple to this oscillating axion dark-matter field, when propagating on Earth's trajectory through our Galaxy. This spin coupling resembles an oscillating pseudo-magnetic field which modulates the spin precession of nuclear spins. Here we report on the null result of a demonstration experiment searching for a frequency modulation of the free spin-precession signal of \magHg in a 1 $\mu$T magnetic field. Our search covers the axion mass range $10^{-16}$ eV $\lesssim m_a \lesssim 10^{-13}$ eV and achieves a peak sensitivity to the axion-nucleon coupling of $g_{aNN} \approx 3.5 \times 10^{-6}$ GeV$^{-1}$.