The Astrophysical Journal Letters (Jan 2025)

The NANOGrav 15 yr Data Set: Running of the Spectral Index

  • Gabriella Agazie,
  • Akash Anumarlapudi,
  • Anne M. Archibald,
  • Zaven Arzoumanian,
  • Jeremy G. Baier,
  • Paul T. Baker,
  • Bence Bécsy,
  • Laura Blecha,
  • Adam Brazier,
  • Paul R. Brook,
  • Sarah Burke-Spolaor,
  • J. Andrew Casey-Clyde,
  • Maria Charisi,
  • Shami Chatterjee,
  • Tyler Cohen,
  • James M. Cordes,
  • Neil J. Cornish,
  • Fronefield Crawford,
  • H. Thankful Cromartie,
  • Kathryn Crowter,
  • Megan E. DeCesar,
  • Paul B. Demorest,
  • Heling Deng,
  • Lankeswar Dey,
  • Timothy Dolch,
  • David Esmyol,
  • Elizabeth C. Ferrara,
  • William Fiore,
  • Emmanuel Fonseca,
  • Gabriel E. Freedman,
  • Emiko C. Gardiner,
  • Nate Garver-Daniels,
  • Peter A. Gentile,
  • Kyle A. Gersbach,
  • Joseph Glaser,
  • Deborah C. Good,
  • Kayhan Gültekin,
  • Jeffrey S. Hazboun,
  • Ross J. Jennings,
  • Aaron D. Johnson,
  • Megan L. Jones,
  • David L. Kaplan,
  • Luke Zoltan Kelley,
  • Matthew Kerr,
  • Joey S. Key,
  • Nima Laal,
  • Michael T. Lam,
  • William G. Lamb,
  • Bjorn Larsen,
  • T. Joseph W. Lazio,
  • Natalia Lewandowska,
  • Rafael R. Lino dos Santos,
  • Tingting Liu,
  • Duncan R. Lorimer,
  • Jing Luo,
  • Ryan S. Lynch,
  • Chung-Pei Ma,
  • Dustin R. Madison,
  • Alexander McEwen,
  • James W. McKee,
  • Maura A. McLaughlin,
  • Natasha McMann,
  • Bradley W. Meyers,
  • Patrick M. Meyers,
  • Chiara M. F. Mingarelli,
  • Andrea Mitridate,
  • Cherry Ng,
  • David J. Nice,
  • Stella Koch Ocker,
  • Ken D. Olum,
  • Timothy T. Pennucci,
  • Benetge B. P. Perera,
  • Nihan S. Pol,
  • Henri A. Radovan,
  • Scott M. Ransom,
  • Paul S. Ray,
  • Joseph D. Romano,
  • Jessie C. Runnoe,
  • Alexander Saffer,
  • Shashwat C. Sardesai,
  • Ann Schmiedekamp,
  • Carl Schmiedekamp,
  • Kai Schmitz,
  • Tobias Schröder,
  • Brent J. Shapiro-Albert,
  • Xavier Siemens,
  • Joseph Simon,
  • Magdalena S. Siwek,
  • Sophia V. Sosa Fiscella,
  • Ingrid H. Stairs,
  • Daniel R. Stinebring,
  • Kevin Stovall,
  • Abhimanyu Susobhanan,
  • Joseph K. Swiggum,
  • Stephen R. Taylor,
  • Jacob E. Turner,
  • Caner Unal,
  • Michele Vallisneri,
  • Rutger van Haasteren,
  • Sarah J. Vigeland,
  • Richard von Eckardstein,
  • Haley M. Wahl,
  • Caitlin A. Witt,
  • David Wright,
  • Olivia Young

DOI
https://doi.org/10.3847/2041-8213/ad99d3
Journal volume & issue
Vol. 978, no. 2
p. L29

Abstract

Read online

The NANOGrav 15 yr data provide compelling evidence for a stochastic gravitational-wave (GW) background at nanohertz frequencies. The simplest model-independent approach to characterizing the frequency spectrum of this signal consists of a simple power-law fit involving two parameters: an amplitude A and a spectral index γ . In this Letter, we consider the next logical step beyond this minimal spectral model, allowing for a running (i.e., logarithmic frequency dependence) of the spectral index, ${\gamma }_{{\rm{run}}}(f)=\gamma +\beta \mathrm{ln}\left(f/{f}_{{\rm{ref}}}\right)$ . We fit this running-power-law (RPL) model to the NANOGrav 15 yr data and perform a Bayesian model comparison with the minimal constant-power-law (CPL) model, which results in a 95% credible interval for the parameter β consistent with no running, $\beta \in \left[-0.80,2.96\right]$ , and an inconclusive Bayes factor, ${ \mathcal B }\left({\rm{RPL}}\,{\rm{versus}}\,{\rm{CPL}}\right)=0.69\pm 0.01$ . We thus conclude that, at present, the minimal CPL model still suffices to adequately describe the NANOGrav signal; however, future data sets may well lead to a measurement of nonzero β . Finally, we interpret the RPL model as a description of primordial GWs generated during cosmic inflation, which allows us to combine our results with upper limits from Big Bang nucleosynthesis, the cosmic microwave background, and LIGO–Virgo–KAGRA.

Keywords