Energies (Sep 2023)
Assessing the Environmental Sustainability of Deep Geothermal Heat Plants
Abstract
The energy sector is responsible for a large share of climate-damaging emissions. Regarding the decarbonization of the energy sector, deep geothermal energy is considered to have high potential, particularly in the area of heat supply. In order to gauge the extent to which heat use from deep geothermal energy can make a positive contribution to climate protection, deep geothermal systems should be appraised using an environmental sustainability assessment. Although electricity generation from deep geothermal power plants has been evaluated in many ways in the literature with respect to its sustainability, no such sustainability evaluations of pure geothermal heat plants have been conducted so far. In order to close this research gap, this study presents a systematic approach that makes it possible to apply suitable sustainability criteria across the individual life stages of deep geothermal heat plants based on life-cycle assessment (LCA) guidelines. To demonstrate the effectiveness of the systematic approach presented here, a planned geothermal heat plant in the Upper Rhine Valley, Germany, serves as an example. Based on the estimated plant parameters and the predicted total heat yield, it was possible to determine, for example, the “energy returned on energy invested” (EROI) of the plant, which was approximately 34, and the specific CO2 emissions, which were approximately 5.6 g/kWhth.
Keywords