Environmental Research: Energy (Jan 2024)

Quantifying the impact of energy system model resolution on siting, cost, reliability, and emissions for electricity generation

  • Anna F Jacobson,
  • Denise L Mauzerall,
  • Jesse D Jenkins

DOI
https://doi.org/10.1088/2753-3751/ad6d6f
Journal volume & issue
Vol. 1, no. 3
p. 035009

Abstract

Read online

Runtime and memory requirements for typical formulations of energy system models increase non-linearly with resolution, computationally constraining large-scale models despite state-of-the-art solvers and hardware. This scaling paradigm requires omission of detail which can affect key outputs to an unknown degree. Recent algorithmic innovations employing decomposition have enabled linear increases in runtime and memory use as temporal resolution increases. Newly tractable, higher resolution systems can be compared with lower resolution configurations commonly employed today in academic research and industry practice, providing a better understanding of the potential biases or inaccuracies introduced by these abstractions. We employ a state-of-the art electricity system planning model and new high-resolution systems to quantify the impact of varying degrees of spatial, temporal, and operational resolution on results salient to policymakers and planners. We find models with high spatial and temporal resolution result in more realistic siting decisions and improved emissions, reliability, and price outcomes. Errors are generally larger in systems with low spatial resolution, which omit key transmission constraints. We demonstrate that high temporal resolution cannot overcome biases introduced by low spatial resolution, and vice versa. While we see asymptotic improvements to total system cost and reliability with increased resolution, other salient outcomes such as siting accuracy and emissions exhibit continued improvement across the range of model resolutions considered. We conclude that modelers should carefully balance resolution on spatial, temporal, and operational dimensions and that novel computational methods enabling higher resolution modeling are valuable and can further improve the decision support provided by this class of models.

Keywords