Genes (Jul 2020)

Identification of Genes Encoding CENP-A and Heterochromatin Protein 1 of <i>Lipomyces starkeyi</i> and Functional Analysis Using <i>Schizosaccharomyces pombe</i>

  • Yuko Takayama

DOI
https://doi.org/10.3390/genes11070769
Journal volume & issue
Vol. 11, no. 7
p. 769

Abstract

Read online

Centromeres function as a platform for the assembly of multiple kinetochore proteins and are essential for chromosome segregation. An active centromere is characterized by the presence of a centromere-specific histone H3 variant, CENP-A. Faithful centromeric localization of CENP-A is supported by heterochromatin in almost all eukaryotes; however, heterochromatin proteins have been lost in most Saccharomycotina. Here, identification of CENP-A (CENP-AL.s.) and heterochromatin protein 1 (Lsw1) in a Saccharomycotina species, the oleaginous yeast Lipomyces starkeyi, is reported. To determine if these proteins are functional, the proteins in S. pombe, a species widely used to study centromeres, were ectopically expressed. CENP-AL.s. localizes to centromeres and can be replaced with S. pombe CENP-A, indicating that CENP-AL.s. is a functional centromere-specific protein. Lsw1 binds at heterochromatin regions, and chromatin binding is dependent on methylation of histone H3 at lysine 9. In other species, self-interaction of heterochromatin protein 1 is thought to cause folding of chromatin, triggering transcription repression and heterochromatin formation. Consistent with this, it was found that Lsw1 can self-interact. L. starkeyi chromatin contains the methylation of histone H3 at lysine 9. These results indicated that L. starkeyi has a primitive heterochromatin structure and is an attractive model for analysis of centromere heterochromatin evolution.

Keywords