Application of Self-Organizing Maps to Explore the Interactions of Microorganisms with Soil Properties in Fruit Crops Under Different Management and Pedo-Climatic Conditions
Francesca Antonucci,
Simona Violino,
Loredana Canfora,
Małgorzata Tartanus,
Ewa M. Furmanczyk,
Sara Turci,
Maria G. Tommasini,
Nika Cvelbar Weber,
Jaka Razinger,
Morgane Ourry,
Samuel Bickel,
Thomas A. J. Passey,
Anne Bohr,
Heinrich Maisel,
Massimo Pugliese,
Francesco Vitali,
Stefano Mocali,
Federico Pallottino,
Simone Figorilli,
Anne D. Jungblut,
Hester J. van Schalkwyk,
Corrado Costa,
Eligio Malusà
Affiliations
Francesca Antonucci
Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via Della Pascolare 16, 00015 Monterotondo, Italy
Simona Violino
Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via Della Pascolare 16, 00015 Monterotondo, Italy
Loredana Canfora
Centro di Ricerca Agricoltura e Ambiente, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via della Navicella 4, 00184 Rome, Italy
Małgorzata Tartanus
The National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
Ewa M. Furmanczyk
The National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
Sara Turci
RI.NOVA Research and Innovation Soc. Coop., Via Dell’Arrigoni 120, 47522 Cesena, Italy
Maria G. Tommasini
RI.NOVA Research and Innovation Soc. Coop., Via Dell’Arrigoni 120, 47522 Cesena, Italy
Nika Cvelbar Weber
Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
Jaka Razinger
Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
Morgane Ourry
Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
Samuel Bickel
Institute of Environmental Biotechnology, Technische Universitaet Graz, Rechbauerstrasse 12, 8010 Graz, Austria
Thomas A. J. Passey
National Institute of Agricultural Botany (NIAB), New Road, East Malling, Kent ME19 6BJ, UK
Anne Bohr
Competence Center for Fruit Crops at the Lake of Constance, Schuhmacherhof 6, 88213 Ravensburg, Germany
Agroinnova, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
Francesco Vitali
Centro di Ricerca Agricoltura e Ambiente, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via di Lanciola 12/A, 50125 Firenze, Italy
Stefano Mocali
Centro di Ricerca Agricoltura e Ambiente, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via di Lanciola 12/A, 50125 Firenze, Italy
Federico Pallottino
Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via Della Pascolare 16, 00015 Monterotondo, Italy
Simone Figorilli
Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via Della Pascolare 16, 00015 Monterotondo, Italy
Anne D. Jungblut
Natural History Museum, Department of Sciences, Cromwell Road, London SW7 5BD, UK
Hester J. van Schalkwyk
Natural History Museum, Department of Sciences, Cromwell Road, London SW7 5BD, UK
Corrado Costa
Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via Della Pascolare 16, 00015 Monterotondo, Italy
Eligio Malusà
The National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
Background: Self-organizing maps (SOMs) are a class of neural network algorithms able to visually describe a high-dimensional dataset onto a two-dimensional grid. SOMs were explored to classify soils based on an array of physical, chemical, and biological parameters. Methods: The SOM analysis was performed considering soil physical, chemical, and microbial data gathered from an array of apple orchards and strawberry plantations managed by organic or conventional methods and located in different European climatic zones. Results: The SOM analysis considering the “climatic zone” categorical variables was able to discriminate the samples from the three zones for both crops. The zones were associated with different soil textures and chemical characteristics, and for both crops, the Continental zone was associated with microbial parameters—including biodiversity indices derived from the NGS data analysis. However, the SOM analysis based on the “management method” categorical variables was not able to discriminate the soils between organic and integrated management. Conclusions: This study allowed for the discrimination of soils of medium- and long-term fruit crops based on their pedo-climatic characteristics and associating these characteristics to some indicators of the soil biome, pointing to the possibility of better understanding the interactions among diverse variables, which could support unraveling the intricate web of relationships that define soil quality.