Drug Design, Development and Therapy (Nov 2021)
Antifungal Effects and Potential Mechanisms of Benserazide Hydrochloride Alone and in Combination with Fluconazole Against Candida albicans
Abstract
Xueqi Chen,1,2 Jiyong Wu,3 Lei Sun,3 Jing Nie,3 Shan Su,1,2 Shujuan Sun1,3 1Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People’s Republic of China; 2Department of Pharmacy, China-Japan Friendship Hospital, Beijing, People’s Republic of China; 3Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, People’s Republic of ChinaCorrespondence: Shujuan SunDepartment of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People’s Republic of ChinaEmail [email protected]: The resistance of C. albicans to traditional antifungal drugs brings a great challenge to clinical treatment. To overcome the resistance, developing antifungal agent sensitizers has attracted considerable attention. This study aimed to determine the anti-Candida activity of BEH alone or BEH–FLC combination and to explore the underlying mechanisms.Materials and Methods: In vitro antifungal effects were performed by broth microdilution assay and XTT reduction assay. Infected Galleria mellonella larvae model was used to determine the antifungal effects in vivo. Probes Fluo-3/AM, FITC-VAD-FMK and rhodamine 6G were used to study the influence of BEH and FLC on intracellular calcium concentration, metacaspase activity and drug efflux of C. albicans.Results: BEH alone exhibited obvious antifungal activities against C. albicans. BEH plus FLC not only showed synergistic effects against planktonic cells and preformed biofilms within 8 h but also enhanced the antifungal activity in infected G. mellonella larvae. Mechanistic studies indicated that antifungal effects of drugs might be associated with the increasement of calcium concentration, activation of metacaspase activity to reduce virulence and anti-biofilms, but were not related to drug efflux.Conclusion: BEH alone or combined with FLC displayed potent antifungal activity both in vitro and in vivo, and the underlying mechanisms were related to reduced virulence factors.Keywords: fluconazole-resistant Candida albicans, benserazide, fluconazole, synergism, biofilm, Galleria mellonella