Poultry Science (Mar 2023)
Duck plague virus infection alter the microbiota composition and intestinal functional activity in Muscovy ducks
Abstract
ABSTRACT: Intestinal damage from the duck plague virus (DPV) infection affects intestinal inflammation factors expression and barrier dysfunction. Here we report findings from the pathogenicity of the intestinal tract, intestinal morphological, intestinal permeability, inflammatory cytokines, and tight junction gene expression in 72 two-wk-old Muscovy ducks exposed to DPV. The characterization of intestinal metabolites and their classification were examined using 16-sequencing technology. The primary outcomes of the study evaluated the correlation between intestinal microbiota characteristics and the degree of infected tissue. The secondary outcomes were to determine whether the biosignatures that defined the microbiota were positively or negatively correlated with viral infection. The tissue was infected accompanied a mild damage of liver and spleen, and severe intestinal bleeding. Two inoculation routes were constructed with susceptible animals to assess the pathogenicity of the DPV in order to enrich the status of infection in Muscovy ducks. High levels of virus titer from Muscovy ducks were found being in the intestine. The expression of INF-α and IL-β with viral infection increased at 4, and 6 dpi, respectively, after detecting of the inflammatory factor and barrier function genes. At 4 and 6 dpi, barrier function gene of ZO-1 and Occludin reduced. The severity of viral infection was significantly correlated with the characteristics of the intestinal microbiota. Ducks infected with the DPV had an increase in the phylum Firmicutes, a decrease in the phylum Actinobacteriota, and differential enrichment with the genus Bacteroides, Tyzzerella, Enterococcus, and Escherchia-Shigella, while the genus Rothia, Streptococcus, and Ralstonia were differentially enriched in the control group. The findings from the current study demonstrated that DPV infection leads to an imbalance of the intestinal microbiota and disruption of the microbial homeostasis in the intestinal tissue in ducks, which might be one of the mechanisms whereby DPV infection might be established in Muscovy ducks. Na+/K+-ATPase and Ca2+/Mg2+-ATPase activity monitoring also showed that viral infection reduced these activities. These findings imply that changes in intestinal microbiota, intestinal barrier gene expression, and inflammatory factor are related to viral infection. When taken as a whole, this work provides fresh perspectives on the characteristics of intestinal microbiota and the infection damage caused by the DPV.