Journal of Applied Biomaterials & Functional Materials (Dec 2020)

An investigation in the remineralization and acid resistant characteristics of nanohydroxyapatite produced from eggshell waste via mechanochemistry

  • Stanley Chibuzor Onwubu,
  • Deneshree Naidoo,
  • Sandile Cromwell Mkhize,
  • Ntokozo Lihlithemba Ndumiso Mabaso,
  • Phumlane Selby Mdluli,
  • Surendra Thakur

DOI
https://doi.org/10.1177/2280800020968352
Journal volume & issue
Vol. 18

Abstract

Read online

Objectives: This study focuses on the properties of nanohydroxyapatite (nHAp) in terms of remineralization and acid resistance. The nHAp were produced from waste eggshells via the mechanochemistry process. Materials and methods: The characterization was based on Fourier Transform Spectroscopy, X-ray diffraction, Field Scanning Electron Microscope (FESEM), and High-Resolution Electron Microscope to determine the surface morphology of the nHAp. The acid and remineralization properties were evaluated using bovine enamel and dentine models ( n = 5) while the buffering properties against acids were studied using a pH meter. The biocompatibility of the produce nHAp was assessed in vitro against NIH 3T3. Results: The XRD and FTIR results confirm that nHAp were successfully produced from eggshell waste after 5 h of milling. The HRTEM reveals a semi-sphere morphology with an average dimension of 9 to 20 nm. The buffering test suggests that nHAp were highly effective in neutralizing common dietary acids. Also, the nHAp exhibits outstanding remineralization and occluding properties. The cytotoxicity assay suggests that the nHAp had a low toxicity. Conclusion: The study concludes that using eggshell waste to produce nHAp will help in waste management and at the same time, provide valuable biomaterial for the treatment of tooth sensitivity.