Plants (Oct 2023)

Suspension Cell Culture of <i>Polyscias fruticosa</i> (L.) Harms in Bubble-Type Bioreactors—Growth Characteristics, Triterpene Glycosides Accumulation and Biological Activity

  • Maria V. Titova,
  • Dmitry V. Kochkin,
  • Elena S. Sukhanova,
  • Elena N. Gorshkova,
  • Tatiana M. Tyurina,
  • Igor M. Ivanov,
  • Maria K. Lunkova,
  • Elena V. Tsvetkova,
  • Anastasia Orlova,
  • Elena V. Popova,
  • Alexander M. Nosov

DOI
https://doi.org/10.3390/plants12203641
Journal volume & issue
Vol. 12, no. 20
p. 3641

Abstract

Read online

Polyscias fruticosa (L.) Harms, or Ming aralia, is a medicinal plant of the Araliaceae family, which is highly valued for its antitoxic, anti-inflammatory, analgesic, antibacterial, anti-asthmatic, adaptogenic, and other properties. The plant can be potentially used to treat diabetes and its complications, ischemic brain damage, and Parkinson’s disease. Triterpene glycosides of the oleanane type, such as 3-O-[β-D-glucopyranosyl-(1→4)-β-D-glucuronopyranosyl] oleanolic acid 28-O-β-D-glucopyranosyl ester (PFS), ladyginoside A, and polysciosides A-H, are mainly responsible for biological activities of this species. In this study, cultivation of the cell suspension of P. fruticosa in 20 L bubble-type bioreactors was attempted as a sustainable method for cell biomass production of this valuable species and an alternative to overexploitation of wild plant resources. Cell suspension cultivated in bioreactors under a semi-continuous regime demonstrated satisfactory growth with a specific growth rate of 0.11 day−1, productivity of 0.32 g (L · day)−1, and an economic coefficient of 0.16 but slightly lower maximum biomass accumulation (~6.8 g L−1) compared to flask culture (~8.2 g L−1). Triterpene glycosides PFS (0.91 mg gDW−1) and ladyginoside A (0.77 mg gDW−1) were detected in bioreactor-produced cell biomass in higher concentrations compared to cells grown in flasks (0.50 and 0.22 mg gDW−1, respectively). In antibacterial tests, the minimum inhibitory concentrations (MICs) of cell biomass extracts against the most common pathogens Staphylococcus aureus, methicillin-resistant strain MRSA, Pseudomonas aeruginosa, and Escherichia coli varied within 250–2000 µg mL−1 which was higher compared to extracts of greenhouse plant leaves (MIC = 4000 µg mL−1). Cell biomass extracts also exhibited antioxidant activity, as confirmed by DPPH and TEAC assays. Our results suggest that bioreactor cultivation of P. fruticosa suspension cell culture may be a perspective method for the sustainable biomass production of this species.

Keywords