Nature Communications (Jan 2025)
Injectable supramolecular hydrogel co-loading abemaciclib/NLG919 for neoadjuvant immunotherapy of triple-negative breast cancer
Abstract
Abstract The efficacy of cancer immunotherapy relies on a sufficient amount of functional immune cells. Triple-negative breast cancer lacks enough immune cell infiltration, and adjuvant therapy is necessary to prime anti-tumor immunity. However, the improvement in efficacy is unsatisfactory with concern about inducing systemic immunotoxicity. Herein, we create an abemaciclib-loaded supramolecular peptide hydrogel formed by peptide-drug amphiphiles for neoadjuvant immunotherapy of triple-negative breast cancer, where the amphiphile is a conjugate of a β-sheet-forming peptide with 1-cyclohexyl-2-(5H-imidazo[5,1-a]isoindol-5-yl)ethanol (NLG919), an inhibitor of indoleamine 2,3-dioxygenase 1. The hydrogel can be injected into the tumor site and retained for at least one week for the sustained release of both abemaciclib and NLG919. The abemaciclib is able to induce immunogenic cell death of cancer cells and increase interleukin-2 secretion by cytotoxic T lymphocytes. Abemaciclib adversely upregulates indoleamine 2,3-dioxygenase 1, whose kynurenine production activity is inhibited by NLG919. The neoadjuvant immunotherapy reduces tumor recurrence and pulmonary metastasis and prolongs the survival of animals. This hydrogel provides a potential platform for neoadjuvant immunotherapy of triple-negative breast cancer with reduced toxicity compared with free abemaciclib.