Communications Engineering (Jan 2024)
Deep learning-based approach for high spatial resolution fibre shape sensing
Abstract
Abstract Fiber optic shape sensing is an innovative technology that has enabled remarkable advances in various navigation and tracking applications. Although the state-of-the-art fiber optic shape sensing mechanisms can provide sub-millimeter spatial resolution for off-axis strain measurement and reconstruct the sensor’s shape with high tip accuracy, their overall cost is very high. The major challenge in more cost-effective fiber sensor alternatives for providing accurate shape measurement is the limited sensing resolution in detecting shape deformations. Here, we present a data-driven technique to overcome this limitation by removing strain measurement, curvature estimation, and shape reconstruction steps. We designed an end-to-end convolutional neural network that is trained to directly predict the sensor’s shape based on its spectrum. Our fiber sensor is based on easy-to-fabricate eccentric fiber Bragg gratings and can be interrogated with a simple and cost-effective readout unit in the spectral domain. We demonstrate that our deep-learning model benefits from undesired bending-induced effects (e.g., cladding mode coupling and polarization), which contain high-resolution shape deformation information. These findings are the preliminary steps toward a low-cost yet accurate fiber shape sensing solution for detecting complex multi-bend deformations.