Journal of Animal Science and Biotechnology (Sep 2022)
Supplementing the early diet of broilers with soy protein concentrate can improve intestinal development and enhance short-chain fatty acid-producing microbes and short-chain fatty acids, especially butyric acid
Abstract
Abstract Background Research on nutrition in early-life commonly focuses on the maturation of the intestine because the intestinal system is crucial for ensuring continued growth. To explore the importance of early nutrition regulation in animals, soy protein concentrate (SPC) was added to the early diet of broilers to investigate its effects on amino acid digestibility, intestinal development, especially intestinal microorganisms, and broiler metabolites. A total of 192 one-day-old Arbor Acres (AA) male broilers were randomly assigned to two experimental treatments with 8 replicates of 12 birds. The control group was fed a basal diet (control), and the treatment group was fed a basal diet supplemented with 12% SPC (SPC12) during the first 10 d (starter phase). From d 11 to 21 (grower phase) and d 22 to 42 (finisher phase), a basal diet was fed to both treatment groups. Results SPC reduced the pH value and acid-binding capacity of the starter diet (P < 0.05, d 10); SPC in the early diet enhanced the gizzard weight (P < 0.05, d 10 and d 42) and the ileum weight (P < 0.05, d 10) and decreased the weight and length of the jejunum (P < 0.05, d 10) and the relative length of the duodenum and jejunum (P < 0.05, d 10). At the same time, SPC enhanced villus height (P < 0.05, d 10) and muscle thickness in the jejunum and ileum (P < 0.05, d 10) and increased the number of goblet cells in the duodenum (P < 0.05, d 10). Meanwhile, SPC increased the Chao1 index and the ACE index (P < 0.05, d 10) and altered the composition of caecal microflora at d 10. SPC also increased the relative abundance of Alistipes, Anaerotruncus, Erysipelatoclostridium, Intestinimonas and Flavonifractor bacteria (P < 0.05, d 10). At the same time, the concentrations of caecal butyric acid and total short-chain fatty acids (SCFAs) were also increased in the SPC12 group (P < 0.05, d 10). Conclusions In summary, the results showed that supplementing the starter diet of broilers with SPC has a significant effect on the early development of the intestine and the microflora. Graphical abstract
Keywords