Nanomaterials (Mar 2022)

Observation of Spin-Glass-like Behavior over a Wide Temperature Range in Single-Domain Nickel-Substituted Cobalt Ferrite Nanoparticles

  • Gassem M. Alzoubi

DOI
https://doi.org/10.3390/nano12071113
Journal volume & issue
Vol. 12, no. 7
p. 1113

Abstract

Read online

In this study, single-domain NixCo1−xFe2O4 ferrite nanoparticles with 0≤x≤1 were hydrothermally prepared and characterized using X-ray diffraction, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometry. According to the Rietveld refinement results, all of the prepared nanoparticles were single phase with spinel-type structures. Increasing the Ni content increased the average crystallite size and X-ray density while decreasing the lattice constant. According to the TEM observations, the nanoparticles were spherical in shape. The formation of a single-phase spinel structure with two lattices centered at tetrahedral and octahedral sites was confirmed by the observation of two absorption bands in all FT-IR spectra. Magnetization data showed that the prepared nanoparticles of all compositions were ferrimagnetic across the entire temperature range of 300 K to 10 K. Magnetic properties such as saturation magnetization, remanent magnetization, coercivity, magnetic anisotropy, and magnetic moments per unit cell were found to decrease with increasing Ni content. The big difference in Hc of the x = 0, 0.25, 0.5, 0.75 ferrites between 300 K and 10 K suggested that these ferrite nanoparticles are truly single-domain nanoparticles. The small value of Hc of the NiFe2O4(x=1) ferrite and its very weak temperature dependence suggested that this sample is in a multi-domain regime. The ZFC–FC curves revealed the existence of spin-glass-like behavior in these ferrite nanoparticles over the entire temperature range.

Keywords