Physical Review X (Nov 2017)

Probing Slow Relaxation and Many-Body Localization in Two-Dimensional Quasiperiodic Systems

  • Pranjal Bordia,
  • Henrik Lüschen,
  • Sebastian Scherg,
  • Sarang Gopalakrishnan,
  • Michael Knap,
  • Ulrich Schneider,
  • Immanuel Bloch

DOI
https://doi.org/10.1103/PhysRevX.7.041047
Journal volume & issue
Vol. 7, no. 4
p. 041047

Abstract

Read online Read online

In a many-body localized (MBL) quantum system, the ergodic hypothesis breaks down, giving rise to a fundamentally new many-body phase. Whether and under which conditions MBL can occur in higher dimensions remains an outstanding challenge both for experiments and theory. Here, we experimentally explore the relaxation dynamics of an interacting gas of fermionic potassium atoms loaded in a two-dimensional optical lattice with different quasiperiodic potentials along the two directions. We observe a dramatic slowing down of the relaxation for intermediate disorder strengths. Furthermore, beyond a critical disorder strength, we see negligible relaxation on experimentally accessible time scales, indicating a possible transition into a two-dimensional MBL phase. Our experiments reveal a distinct interplay of interactions, disorder, and dimensionality and provide insights into regimes where controlled theoretical approaches are scarce.