Forests (Jul 2022)

Canopy Transpiration and Stomatal Conductance Dynamics of <i>Ulmus pumila</i> L. and <i>Caragana korshinskii</i> Kom. Plantations on the Bashang Plateau, China

  • Yu Zhang,
  • Wei Li,
  • Haiming Yan,
  • Baoni Xie,
  • Jianxia Zhao,
  • Nan Wang,
  • Xiaomeng Wang

DOI
https://doi.org/10.3390/f13071081
Journal volume & issue
Vol. 13, no. 7
p. 1081

Abstract

Read online

Constructing protective forests to control water and soil erosion is an effective measure to address land degradation in the Bashang Plateau of North China, but forest dieback has occurred frequently due to severe water deficits in recent decades. However, transpiration dynamics and their biophysical control factors under various soil water contents for different forest functional types are still unknown. Here, canopy transpiration and stomatal conductance of a 38-year-old Ulmus pumila L. and a 20-year-old Caragana korshinskii Kom. were quantified using the sap flow method, while simultaneously monitoring the meteorological and soil water content. The results showed that canopy transpiration averaged 0.55 ± 0.34 mm d−1 and 0.66 ± 0.32 mm d−1 for U. pumila, and was 0.74 ± 0.26 mm d−1 and 0.77 ± 0.24 mm d−1 for C. korshinskii in 2020 and 2021, respectively. The sensitivity of canopy transpiration to vapor pressure deficit (VPD) decreased as soil water stress increased for both species, indicating that the transpiration process is significantly affected by soil drought. Additionally, canopy stomatal conductance averaged 1.03 ± 0.91 mm s−1 and 1.34 ± 1.22 mm s−1 for U. pumila, and was 1.46 ± 0.90 mm s−1 and 1.51 ± 1.06 mm s−1 for C. korshinskii in 2020 and 2021, respectively. The low values of the decoupling coefficient (Ω) showed that canopy and atmosphere were well coupled for both species. Stomatal sensitivity to VPD decreased with decreasing soil water content, indicating that both U. pumila and C. korshinskii maintained a water-saving strategy under the stressed water conditions. Our results enable better understanding of transpiration dynamics and water-use strategies of different forest functional types in the Bashang Plateau, which will provide important insights for planted forests management and ecosystem stability under future climate changes.

Keywords