Animals (Nov 2022)
Ventilator-Assisted Inspiratory and Expiratory Breath-Hold Thoracic Computed Tomographic Scans Can Detect Dynamic and Static Airway Collapse in Dogs with Limited Agreement with Tracheobronchoscopy
Abstract
Airway collapse (AC) in dogs includes a tracheal collapse, mainstem and lobar bronchial collapse, and bronchomalacia (i.e., segmental/subsegmental bronchial collapse). The clinical presentation of AC may overlap with non-collapsible airway disease (NCAD) or another non-lower airway respiratory disease (NLARD). This study determined whether paired inspiratory (I)/expiratory (E)-breath-hold computed tomography (I/E-BH CT) can detect a static and dynamic AC in dogs with spontaneous respiratory disease and it compared the CT-derived metrics of the AC to the tracheobronchoscopy metrics. The CT-acquired I and E diameter and cross-sectional area (CSA) for the trachea, mainstem and lobar bronchi in dogs with an AC (n = 16), NCAD (16), and NLARD (19) served for a dynamic percent of the airway narrowing (%AN) calculation. A scoring system assessed the bronchomalacia. The circularity was calculated for each airway. The results were compared to the tracheobronchoscopy collapse grading. In the dogs with an AC, the %AN was larger for the trachea, right mainstem bronchus and right middle lobar bronchus when they were compared to the dogs with NCAD and NLARD. Flattening was only identified for the trachea of the AC dogs. The agreement between the CT and tracheobronchoscopy scores was 20% from trachea to the lobar bronchi and 47% for the segmental/subsegmental bronchi. Paired I/E-BH CT can detect static and dynamic AC with limited agreement with the tracheobronchoscopy metrics. Independent scoring systems that are tailored to the clinical manifestations of functional impairments are needed.
Keywords