Research on Compound Sliding Mode Control of a Permanent Magnet Synchronous Motor in Electromechanical Actuators
Jiachun Lin,
Yuteng Zhao,
Pan Zhang,
Junjie Wang,
Hao Su
Affiliations
Jiachun Lin
Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Department of Instrument Science and Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, No. 100, Ping Le Yuan, Chaoyang District, Beijing 100124, China
Yuteng Zhao
Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Department of Instrument Science and Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, No. 100, Ping Le Yuan, Chaoyang District, Beijing 100124, China
Pan Zhang
Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Department of Instrument Science and Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, No. 100, Ping Le Yuan, Chaoyang District, Beijing 100124, China
Junjie Wang
The 45th Research Institute of China Electronics Technology Group Corporation, Taihe Third Street, Daxing District, Beijing 100176, China
Hao Su
Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Department of Instrument Science and Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, No. 100, Ping Le Yuan, Chaoyang District, Beijing 100124, China
In order to improve the response speed and disturbance rejection ability of a permanent magnet synchronous motor (PMSM) in an electromechanical actuator (EMA), a compound sliding mode control (CSMC) is proposed. The CSMC consists of a sliding mode controller with a new reaching law and disturbance observer based on a symmetric S-type function. The stability of the CSMC is analyzed using the Lyapunov stability analysis. The effectiveness of the CSMC is confirmed by the Simulink simulation, and experiments were conducted on a semi-physical platform. The results obtained by comparing the CSMC with the proportional integral (PI) control and traditional sliding mode control show that the CSMC has a faster response and stronger disturbance rejection ability and reduces chattering.