Sensors & Transducers (May 2024)

Sensory Architecture Applied to Robotic Systems in Forest Environments

  • Tiago PEREIRA,
  • Tiago GAMEIRO,
  • Carlos VIEGAS,
  • Nuno FERREIRA

Journal volume & issue
Vol. 265, no. 2
pp. 9 – 16

Abstract

Read online

The development of technologies to enable robots to operate autonomously in challenging forest environments is crucial for promoting effective natural resource management and preventing forest fires, standing out as a priority on environmental conservation and public safety agendas. This article presents a detailed discussion on the development of an innovative sensory architecture, specifically designed to integrate a wide range of advanced sensors. The main objective of this architecture is to provide highly accurate inputs to a system, thereby empowering a forest robot to make autonomous and adaptive decisions in real-time. To achieve this ambitious goal, the proposed sensory architecture defines a comprehensive set of crucial variables, which are carefully selected and strategically integrated. This design results in a distributed system capable of processing multiple subsystems in parallel and efficiently. This innovative approach enables the conversion of a conventional forest mulcher machine into a fully autonomous and highly intelligent forest robot. Furthermore, the article details the procedures and methodologies used to experimentally validate the robustness and effectiveness of the developed system. Through rigorous testing and comprehensive analyses, the system's ability to handle a variety of adverse environmental conditions and typical operational challenges in forest environments is demonstrated. These experimental validations are essential to ensure the reliability and accuracy of the system in real-world situations.

Keywords