The Astrophysical Journal (Jan 2023)

Symphony: Cosmological Zoom-in Simulation Suites over Four Decades of Host Halo Mass

  • Ethan O. Nadler,
  • Philip Mansfield,
  • Yunchong Wang,
  • Xiaolong Du,
  • Susmita Adhikari,
  • Arka Banerjee,
  • Andrew Benson,
  • Elise Darragh-Ford,
  • Yao-Yuan Mao,
  • Sebastian Wagner-Carena,
  • Risa H. Wechsler,
  • Hao-Yi Wu

DOI
https://doi.org/10.3847/1538-4357/acb68c
Journal volume & issue
Vol. 945, no. 2
p. 159

Abstract

Read online

We present Symphony, a compilation of 262 cosmological, cold-dark-matter-only zoom-in simulations spanning four decades of host halo mass, from 10 ^11 –10 ^15 M _⊙ . This compilation includes three existing simulation suites at the cluster and Milky Way–mass scales, and two new suites: 39 Large Magellanic Cloud-mass (10 ^11 M _⊙ ) and 49 strong-lens-analog (10 ^13 M _⊙ ) group-mass hosts. Across the entire host halo mass range, the highest-resolution regions in these simulations are resolved with a dark matter particle mass of ≈3 × 10 ^−7 times the host virial mass and a Plummer-equivalent gravitational softening length of ≈9 × 10 ^−4 times the host virial radius, on average. We measure correlations between subhalo abundance and host concentration, formation time, and maximum subhalo mass, all of which peak at the Milky Way host halo mass scale. Subhalo abundances are ≈50% higher in clusters than in lower-mass hosts at fixed sub-to-host halo mass ratios. Subhalo radial distributions are approximately self-similar as a function of host mass and are less concentrated than hosts’ underlying dark matter distributions. We compare our results to the semianalytic model Galacticus , which predicts subhalo mass functions with a higher normalization at the low-mass end and radial distributions that are slightly more concentrated than Symphony. We use UniverseMachine to model halo and subhalo star formation histories in Symphony, and we demonstrate that these predictions resolve the formation histories of the halos that host nearly all currently observable satellite galaxies in the universe. To promote open use of Symphony, data products are publicly available at http://web.stanford.edu/group/gfc/symphony .

Keywords