Earth's Future (Apr 2025)
Exploring Site‐Specific Carbon Dioxide Removal Options With Storage or Sequestration in the Marine Environment – The 10 Mt CO2 yr−1 Removal Challenge for Germany
- W. Yao,
- T. M. Morganti,
- J. Wu,
- M. Borchers,
- A. Anschütz,
- L.‐K. Bednarz,
- K. A. Bhaumik,
- M. Böttcher,
- K. Burkhard,
- T. Cabus,
- A. S. Chua,
- I. Diercks,
- M. Esposito,
- M. Fink,
- M. Fouqueray,
- F. Gasanzade,
- S. Geilert,
- J. Hauck,
- F. Havermann,
- I. Hellige,
- S. Hoog,
- M. Jürchott,
- H. T. Kalapurakkal,
- J. Kemper,
- I. Kremin,
- I. Lange,
- J. M. Lencina‐Avila,
- M. Liadova,
- F. Liu,
- S. Mathesius,
- N. Mehendale,
- T. Nagwekar,
- M. Philippi,
- G. L. N. Luz,
- M. Ramasamy,
- F. Stahl,
- L. Tank,
- M.‐E. Vorrath,
- L. Westmark,
- H.‐W. Wey,
- R. Wollnik,
- M. Wölfelschneider,
- W. Bach,
- K. Bischof,
- M. Boersma,
- U. Daewel,
- M. Fernández‐Méndez,
- J. K. Geuer,
- D. P. Keller,
- A. Kopf,
- C. Merk,
- N. Moosdorf,
- N. Oppelt,
- A. Oschlies,
- J. Pongratz,
- A. Proelss,
- G. J. Rehder,
- L. Rüpke,
- N. Szarka,
- D. Thraen,
- K. Wallmann,
- N. Mengis
Affiliations
- W. Yao
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
- T. M. Morganti
- Leibniz Institute for Baltic Sea Research (IOW) Rostock Germany
- J. Wu
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
- M. Borchers
- Department of Bioenergy Helmholtz Centre for Environmental Research Leipzig Germany
- A. Anschütz
- Leibniz Institute for Baltic Sea Research (IOW) Rostock Germany
- L.‐K. Bednarz
- Kiel Institute for the World Economy Kiel Germany
- K. A. Bhaumik
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
- M. Böttcher
- SWP‐German Institute for International and Security Affairs Berlin Germany
- K. Burkhard
- Leibniz University Hannover Hannover Germany
- T. Cabus
- Kiel University Kiel Germany
- A. S. Chua
- Dalhousie University Halifax NS Canada
- I. Diercks
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
- M. Esposito
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
- M. Fink
- University of Hamburg Hamburg Germany
- M. Fouqueray
- Leibniz Centre for Tropical Marine Research (ZMT) Bremen Germany
- F. Gasanzade
- Kiel University Kiel Germany
- S. Geilert
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
- J. Hauck
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
- F. Havermann
- Ludwig‐Maximilians‐Universität München Munich Germany
- I. Hellige
- Max Planck Institute for Marine Microbiology Bremen Germany
- S. Hoog
- Fichtner GmbH & Co. KG Hamburg Germany
- M. Jürchott
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
- H. T. Kalapurakkal
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
- J. Kemper
- University of Applied Sciences Kiel Kiel Germany
- I. Kremin
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
- I. Lange
- University of Bremen Bremen Germany
- J. M. Lencina‐Avila
- Leibniz Institute for Baltic Sea Research (IOW) Rostock Germany
- M. Liadova
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
- F. Liu
- Helmholtz Centre Hereon Hamburg Germany
- S. Mathesius
- Potsdam Institute for Climate Impact Research (PIK) Member of the Leibniz Association Potsdam Germany
- N. Mehendale
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
- T. Nagwekar
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
- M. Philippi
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
- G. L. N. Luz
- University of Hamburg Hamburg Germany
- M. Ramasamy
- Leibniz Centre for Tropical Marine Research (ZMT) Bremen Germany
- F. Stahl
- University of Bremen Bremen Germany
- L. Tank
- Kiel University Kiel Germany
- M.‐E. Vorrath
- University of Hamburg Hamburg Germany
- L. Westmark
- University of Hamburg Hamburg Germany
- H.‐W. Wey
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
- R. Wollnik
- German Biomass Research Centre Leipzig Germany
- M. Wölfelschneider
- Leibniz Centre for Tropical Marine Research (ZMT) Bremen Germany
- W. Bach
- University of Bremen Bremen Germany
- K. Bischof
- University of Bremen Bremen Germany
- M. Boersma
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
- U. Daewel
- Helmholtz Centre Hereon Hamburg Germany
- M. Fernández‐Méndez
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
- J. K. Geuer
- Max Planck Institute for Marine Microbiology Bremen Germany
- D. P. Keller
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
- A. Kopf
- University of Bremen Bremen Germany
- C. Merk
- Kiel Institute for the World Economy Kiel Germany
- N. Moosdorf
- Kiel University Kiel Germany
- N. Oppelt
- Kiel University Kiel Germany
- A. Oschlies
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
- J. Pongratz
- Ludwig‐Maximilians‐Universität München Munich Germany
- A. Proelss
- University of Hamburg Hamburg Germany
- G. J. Rehder
- Leibniz Institute for Baltic Sea Research (IOW) Rostock Germany
- L. Rüpke
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
- N. Szarka
- German Biomass Research Centre Leipzig Germany
- D. Thraen
- Department of Bioenergy Helmholtz Centre for Environmental Research Leipzig Germany
- K. Wallmann
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
- N. Mengis
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
- DOI
- https://doi.org/10.1029/2024EF004902
- Journal volume & issue
-
Vol. 13,
no. 4
pp. n/a – n/a
Abstract
Abstract Marine carbon dioxide removal (mCDR) and geological carbon storage in the marine environment (mCS) promise to help mitigate global climate change alongside drastic emission reductions. However, the implementable potential of mCDR and mCS depends, apart from technology readiness, also on site‐specific conditions. In this work, we explore different options for mCDR and mCS, using the German context as a case study. We challenge each option to remove 10 Mt CO2 yr−1, accounting for 8%–22% of projected hard‐to‐abate and residual emissions of Germany in 2045. We focus on the environmental, resource, and infrastructure requirements of individual mCDR and mCS options at specific sites, within the German jurisdiction when possible. This serves as an entry point to discuss main uncertainty factors and research needs beyond technology readiness, and, where possible, cost estimates, expected environmental effects, and monitoring approaches. In total, we describe 10 mCDR and mCS options; four aim at enhancing the chemical carbon uptake of the ocean through alkalinity enhancement, four aim at enhancing blue carbon ecosystems' sink capacity, and two employ geological off‐shore storage. Our results indicate that five out of 10 options would potentially be implementable within German jurisdiction, and three of them could potentially meet the challenge. Our exercise serves as an example on how the creation of more tangible and site‐specific CDR options can provide a basis for the assessment of socio‐economic, ethical, political, and legal aspects for such implementations. The approach presented here can easily be applied to other regional or national CDR capacity considerations.
Keywords
- carbon dioxide removal (CDR)
- net‐zero
- ocean‐based climate mitigation
- natural carbon sink enhancement
- artificial upwelling
- seaweed farming