PLoS ONE (Jan 2023)

Tamarix articulata extract offers protection against toxicity induced by beauty products in Hs27 human skin fibroblasts.

  • Abdullah M Alnuqaydan,
  • Faten M Ali Zainy,
  • Abdulmajeed G Almutary,
  • Najwane Said Sadier,
  • Bilal Rah

DOI
https://doi.org/10.1371/journal.pone.0287071
Journal volume & issue
Vol. 18, no. 11
p. e0287071

Abstract

Read online

The current study evaluates the cytotoxicity, mode of cell death and chemical analysis of selected beauty products and evaluation of the protective effect of Tamarix articulata (TA) extract against toxicity induced by beauty products in skin fibroblasts (Hs27). MTT and Crystal violet (CV) assays were used to determine the dose-dependent cytotoxic effects of beauty products against Hs27 fibroblasts. DNA fragmentation assay and annexin-V staining were conducted to determine the mode of cell killing induced by evaluated beauty products. Quantification of reactive oxygen species (ROS) and antioxidant enzyme levels were used to evaluate the oxidative stress. Chemical analysis and heavy metals were evaluated to determine beauty products. Pre-treatment with TA extract for different time points followed by time-dependent exposure with beauty products to assess the protective effect of TA extract in Hs27 cells was analyzed by MTT and CV assays. Owing to the presence of various harmful heavy metals such as arsenic (As), chromium (Cr), cadmium (Cd), nickel (Ni), and lead (Pb) in beauty products, our results revealed that all beauty products induce significant cytotoxicity over time (1, 4 h) in a dose-dependent (125, 250, 500 μg/mL) manner. DNA fragmentation assay, quantification of apoptosis by annexin-V staining, determination of ROS and antioxidant enzymes (CAT, GSH-Px and SOD) revealed that the induced cytotoxicity was caused by oxidative stress-mediated apoptosis. However, pre-incubation with a safe dose (50 μg/mL) of TA for different times (24, 48 h) followed by exposure to various doses (62.5, 125, 250, 500 μg/mL) of beauty products for different times (1, 4 h) revealed significant (*p≤0.05, **p≤0.01) protection against beauty product-mediated cytotoxicity. The effect was more pronounced for 1 h exposure to beauty products compared to 4 h. Our study demonstrates that the due to the presence of heavy metals in synthetic beauty products exhibit marked toxicity to skin fibroblasts due to oxidative stress-mediated apoptosis. However, the presence of abundant bioactive polyphenols with promising antiscavenging activity in TA extracts significantly nullifies cytotoxicity promoted by examined beauty products in skin fibroblasts (Hs27).