Frontiers in Neurology (May 2022)

Through-Plane Super-Resolution With Autoencoders in Diffusion Magnetic Resonance Imaging of the Developing Human Brain

  • Hamza Kebiri,
  • Hamza Kebiri,
  • Erick J. Canales-Rodríguez,
  • Hélène Lajous,
  • Hélène Lajous,
  • Priscille de Dumast,
  • Priscille de Dumast,
  • Gabriel Girard,
  • Gabriel Girard,
  • Gabriel Girard,
  • Yasser Alemán-Gómez,
  • Mériam Koob,
  • András Jakab,
  • András Jakab,
  • Meritxell Bach Cuadra,
  • Meritxell Bach Cuadra,
  • Meritxell Bach Cuadra

DOI
https://doi.org/10.3389/fneur.2022.827816
Journal volume & issue
Vol. 13

Abstract

Read online

Fetal brain diffusion magnetic resonance images (MRI) are often acquired with a lower through-plane than in-plane resolution. This anisotropy is often overcome by classical upsampling methods such as linear or cubic interpolation. In this work, we employ an unsupervised learning algorithm using an autoencoder neural network for single-image through-plane super-resolution by leveraging a large amount of data. Our framework, which can also be used for slice outliers replacement, overperformed conventional interpolations quantitatively and qualitatively on pre-term newborns of the developing Human Connectome Project. The evaluation was performed on both the original diffusion-weighted signal and the estimated diffusion tensor maps. A byproduct of our autoencoder was its ability to act as a denoiser. The network was able to generalize fetal data with different levels of motions and we qualitatively showed its consistency, hence supporting the relevance of pre-term datasets to improve the processing of fetal brain images.

Keywords