EMBO Molecular Medicine (Jan 2023)

Disease modification and symptom relief in osteoarthritis using a mutated GCP‐2/CXCL6 chemokine

  • Sara Caxaria,
  • Nikolaos Kouvatsos,
  • Suzanne E Eldridge,
  • Mario Alvarez‐Fallas,
  • Anne‐Sophie Thorup,
  • Daniela Cici,
  • Aida Barawi,
  • Ammaarah Arshed,
  • Danielle Strachan,
  • Giulia Carletti,
  • Xinying Huang,
  • Sabah Bharde,
  • Melody Deniz,
  • Jacob Wilson,
  • Bethan L Thomas,
  • Costantino Pitzalis,
  • Francesco Paolo Cantatore,
  • Manasi Sayilekshmy,
  • Shafaq Sikandar,
  • Frank P Luyten,
  • Thomas Pap,
  • Joanna C Sherwood,
  • Anthony J Day,
  • Francesco Dell'Accio

DOI
https://doi.org/10.15252/emmm.202216218
Journal volume & issue
Vol. 15, no. 1
pp. n/a – n/a

Abstract

Read online

Abstract We showed that the chemokine receptor C‐X‐C Motif Chemokine Receptor 2 (CXCR2) is essential for cartilage homeostasis. Here, we reveal that the CXCR2 ligand granulocyte chemotactic protein 2 (GCP‐2) was expressed, during embryonic development, within the prospective permanent articular cartilage, but not in the epiphyseal cartilage destined to be replaced by bone. GCP‐2 expression was retained in adult articular cartilage. GCP‐2 loss‐of‐function inhibited extracellular matrix production. GCP‐2 treatment promoted chondrogenesis in vitro and in human cartilage organoids implanted in nude mice in vivo. To exploit the chondrogenic activity of GCP‐2, we disrupted its chemotactic activity, by mutagenizing a glycosaminoglycan binding sequence, which we hypothesized to be required for the formation of a GCP‐2 haptotactic gradient on endothelia. This mutated version (GCP‐2‐T) had reduced capacity to induce transendothelial migration in vitro and in vivo, without affecting downstream receptor signaling through AKT, and chondrogenic activity. Intra‐articular adenoviral overexpression of GCP‐2‐T, but not wild‐type GCP‐2, reduced pain and cartilage loss in instability‐induced osteoarthritis in mice. We suggest that GCP‐2‐T may be used for disease modification in osteoarthritis.

Keywords