BioMedInformatics (Mar 2024)
Naturalize Revolution: Unprecedented AI-Driven Precision in Skin Cancer Classification Using Deep Learning
Abstract
Background: In response to the escalating global concerns surrounding skin cancer, this study aims to address the imperative for precise and efficient diagnostic methodologies. Focusing on the intricate task of eight-class skin cancer classification, the research delves into the limitations of conventional diagnostic approaches, often hindered by subjectivity and resource constraints. The transformative potential of Artificial Intelligence (AI) in revolutionizing diagnostic paradigms is underscored, emphasizing significant improvements in accuracy and accessibility. Methods: Utilizing cutting-edge deep learning models on the ISIC2019 dataset, a comprehensive analysis is conducted, employing a diverse array of pre-trained ImageNet architectures and Vision Transformer models. To counteract the inherent class imbalance in skin cancer datasets, a pioneering “Naturalize” augmentation technique is introduced. This technique leads to the creation of two indispensable datasets—the Naturalized 2.4K ISIC2019 and groundbreaking Naturalized 7.2K ISIC2019 datasets—catalyzing advancements in classification accuracy. The “Naturalize” augmentation technique involves the segmentation of skin cancer images using the Segment Anything Model (SAM) and the systematic addition of segmented cancer images to a background image to generate new composite images. Results: The research showcases the pivotal role of AI in mitigating the risks of misdiagnosis and under-diagnosis in skin cancer. The proficiency of AI in analyzing vast datasets and discerning subtle patterns significantly augments the diagnostic prowess of dermatologists. Quantitative measures such as confusion matrices, classification reports, and visual analyses using Score-CAM across diverse dataset variations are meticulously evaluated. The culmination of these endeavors resulted in an unprecedented achievement—100% average accuracy, precision, recall, and F1-score—within the groundbreaking Naturalized 7.2K ISIC2019 dataset. Conclusion: This groundbreaking exploration highlights the transformative capabilities of AI-driven methodologies in reshaping the landscape of skin cancer diagnosis and patient care. The research represents a pivotal stride towards redefining dermatological diagnosis, showcasing the remarkable impact of AI-powered solutions in surmounting the challenges inherent in skin cancer diagnosis. The attainment of 100% across crucial metrics within the Naturalized 7.2K ISIC2019 dataset serves as a testament to the transformative capabilities of AI-driven approaches in reshaping the trajectory of skin cancer diagnosis and patient care. This pioneering work paves the way for a new era in dermatological diagnostics, heralding the dawn of unprecedented precision and efficacy in the identification and classification of skin cancers.
Keywords