Frontiers in Microbiology (Mar 2024)

Dissecting the association between gut microbiota and hypertrophic scarring: a bidirectional Mendelian randomization study

  • Kaikai Xue,
  • Kaikai Xue,
  • Guojian Zhang,
  • Guojian Zhang,
  • Zihao Li,
  • Zihao Li,
  • Xiangtao Zeng,
  • Xiangtao Zeng,
  • Zi Li,
  • Fulin Wang,
  • Xingxing Zhang,
  • Cai Lin,
  • Cong Mao

DOI
https://doi.org/10.3389/fmicb.2024.1345717
Journal volume & issue
Vol. 15

Abstract

Read online

Hypertrophic scars affect a significant number of individuals annually, giving rise to both cosmetic concerns and functional impairments. Prior research has established that an imbalance in the composition of gut microbes, termed microbial dysbiosis, can initiate the progression of various diseases through the intricate interplay between gut microbiota and the host. However, the precise nature of the causal link between gut microbiota and hypertrophic scarring remains uncertain. In this study, after compiling summary data from genome-wide association studies (GWAS) involving 418 instances of gut microbiota and hypertrophic scarring, we conducted a bidirectional Mendelian randomization (MR) to investigate the potential existence of a causal relationship between gut microbiota and the development of hypertrophic scar and to discern the directionality of causation. By utilizing MR analysis, we identified seven causal associations between gut microbiome and hypertrophic scarring, involving one positive and six negative causal directions. Among them, Intestinimonas, Ruminococcus2, Barnesiella, Dorea, Desulfovibrio piger, and Ruminococcus torques act as protective factors against hypertrophic scarring, while Eubacterium rectale suggests a potential role as a risk factor for hypertrophic scars. Additionally, sensitivity analyses of these results revealed no indications of heterogeneity or pleiotropy. The findings of our MR study suggest a potential causative link between gut microbiota and hypertrophic scarring, opening up new ways for future mechanistic research and the exploration of nanobiotechnology therapies for skin disorders.

Keywords