Heliyon (Jun 2024)

Population interaction network in representative gravitational search algorithms: Logistic distribution leads to worse performance

  • Haotian Li,
  • Yifei Yang,
  • Yirui Wang,
  • Jiayi Li,
  • Haichuan Yang,
  • Jun Tang,
  • Shangce Gao

Journal volume & issue
Vol. 10, no. 11
p. e31631

Abstract

Read online

In this paper, a novel study on the way inter-individual information interacts in meta-heuristic algorithms (MHAs) is carried out using a scheme known as population interaction networks (PIN). Specifically, three representative MHAs, including the differential evolutionary algorithm (DE), the particle swarm optimization algorithm (PSO), the gravitational search algorithm (GSA), and four classical variations of the gravitational search algorithm, are analyzed in terms of inter-individual information interactions and the differences in the performance of each of the algorithms on IEEE Congress on Evolutionary Computation 2017 benchmark functions. The cumulative distribution function (CDF) of the node degree obtained by the algorithm on the benchmark function is fitted to the seven distribution models by using PIN. The results show that among the seven compared algorithms, the more powerful DE is more skewed towards the Poisson distribution, and the weaker PSO, GSA, and GSA variants are more skewed towards the Logistic distribution. The more deviation from Logistic distribution GSA variants conform, the stronger their performance. From the point of view of the CDF, deviating from the Logistic distribution facilitates the improvement of the GSA. Our findings suggest that the population interaction network is a powerful tool for characterizing and comparing the performance of different MHAs in a more comprehensive and meaningful way.

Keywords