Batteries (Feb 2023)

A Review of DC Fast Chargers with BESS for Electric Vehicles: Topology, Battery, Reliability Oriented Control and Cooling Perspectives

  • Hakan Polat,
  • Farzad Hosseinabadi,
  • Md. Mahamudul Hasan,
  • Sajib Chakraborty,
  • Thomas Geury,
  • Mohamed El Baghdadi,
  • Steven Wilkins,
  • Omar Hegazy

DOI
https://doi.org/10.3390/batteries9020121
Journal volume & issue
Vol. 9, no. 2
p. 121

Abstract

Read online

The global promotion of electric vehicles (EVs) through various incentives has led to a significant increase in their sales. However, the prolonged charging duration remains a significant hindrance to the widespread adoption of these vehicles and the broader electrification of transportation. While DC-fast chargers have the potential to significantly reduce charging time, they also result in high power demands on the grid, which can lead to power quality issues and congestion. One solution to this problem is the integration of a battery energy storage system (BESS) to decrease peak power demand on the grid. This paper presents a review of the state-of-the-art use of DC-fast chargers coupled with a BESS. The focus of the paper is on industrial charger architectures and topologies. Additionally, this paper presents various reliability-oriented design methods, prognostic health monitoring techniques, and low-level/system-level control methods. Special emphasis is placed on strategies that can increase the lifetime of these systems. Finally, the paper concludes by discussing various cooling methods for power electronics and stationary/EV batteries.

Keywords