npj Biofilms and Microbiomes (Mar 2025)
Baohuoside I targets SaeR as an antivirulence strategy to disrupt MRSA biofilm formation and pathogenicity
Abstract
Abstract The emergence of methicillin-resistant Staphylococcus au reus (MRSA) represents a critical global health challenge, making the SaeRS two-component system (TCS), a key regulator of S. aureus virulence, an ideal target for novel therapeutic approaches. In this study, virtual screening and thermal shift assays identified Baohuoside I (BI), a flavonol glycoside, as a potent inhibitor of the SaeR response regulator. BI significantly attenuated S. aureus pathogenicity without bactericidal effects, suppressing the expression of key virulence factors, such as hemolysin A (Hla) and Panton-Valentine leukocidin (PVL), while modulating immune evasion pathways. Additionally, BI disrupted biofilm formation, promoting the development of porous, less structured biofilms. Biochemical assays, including EMSA, CETSA, fluorescence quenching, and SPR, confirmed strong binding interactions between SaeR and BI. In vivo, BI demonstrated therapeutic efficacy in Galleria mellonella and rat MRSA models. These findings establish BI as a promising lead for nonbactericidal therapies to combat MRSA infections and mitigate resistance.