Mathematics (Jan 2023)

Discriminative Semantic Feature Pyramid Network with Guided Anchoring for Logo Detection

  • Baisong Zhang,
  • Sujuan Hou,
  • Awudu Karim,
  • Jing Wang,
  • Weikuan Jia,
  • Yuanjie Zheng

DOI
https://doi.org/10.3390/math11020481
Journal volume & issue
Vol. 11, no. 2
p. 481

Abstract

Read online

Logo detection is a technology that identifies logos in images and returns their locations. With logo detection technology, brands can check how often their logos are displayed on social media platforms and elsewhere online and how they appear. It has received a lot of attention for its wide applications across different sectors, such as brand identity protection, product brand management, and logo duration monitoring. Particularly, logo detection technology can offer various benefits for companies to help brands measure their logo coverage, track their brand perception, secure their brand value, increase the effectiveness of their marketing campaigns and build brand awareness more effectively. However, compared with the general object detection, logo detection is more challenging due to the existence of both small logo objects and large aspect ratio logo objects. In this paper, we propose a novel approach, named Discriminative Semantic Feature Pyramid Network with Guided Anchoring (DSFP-GA), which can address these challenges via aggregating the semantic information and generating different aspect ratio anchor boxes. More specifically, our approach mainly consists of two components, namely Discriminative Semantic Feature Pyramid (DSFP) and Guided Anchoring (GA). The former is proposed to fuse semantic features into low-level feature maps to obtain discriminative representation of small logo objects, while the latter is further integrated into DSFP to generate large aspect ratio anchor boxes for detecting large aspect ratio logo objects. Extensive experimental results on four benchmarks demonstrate the effectiveness of the proposed DSFP-GA. Moreover, we further conduct visual analysis and ablation studies to illustrate the strength of the proposed DSFP-GA when detecting both small logo objects and large aspect logo objects.

Keywords