Molecular Imaging (Jan 2023)

Targeted Imaging of Endometriosis and Image-Guided Resection of Lesions Using Gonadotropin-Releasing Hormone Analogue-Modified Indocyanine Green

  • Jing Peng,
  • Qiyu Liu,
  • Tao Pu,
  • Mingxing Zhang,
  • Meng Zhang,
  • Ming Du,
  • Guiling Li,
  • Xiaoyan Zhang,
  • Congjian Xu

DOI
https://doi.org/10.1155/2023/6674054
Journal volume & issue
Vol. 2023

Abstract

Read online

Objective. In this study, we utilized gonadotropin-releasing hormone analogue-modified indocyanine green (GnRHa-ICG) to improve the accuracy of intraoperative recognition and resection of endometriotic lesions. Methods. Gonadotropin-releasing hormone receptor (GnRHR) expression was detected in endometriosis tissues and cell lines via immunohistochemistry and western blotting. The in vitro binding capacities of GnRHa, GnRHa-ICG, and ICG were determined using fluorescence microscopy and flow cytometry. In vivo imaging was performed in mouse models of endometriosis using a near-infrared fluorescence (NIRF) imaging system and fluorescence navigation system. The ex vivo binding capacity was determined using confocal fluorescence microscopy. Results. GnRHa-ICG exhibited a significantly stronger binding capacity to endometriotic cells and tissues than ICG. In mice with endometriosis, GnRHa-ICG specifically imaged endometriotic tissues (EMTs) after intraperitoneal administration, whereas ICG exhibited signals in the intestine. GnRHa-ICG showed the highest fluorescence signals in the EMTs at 2 h and a good signal-to-noise ratio at 48 h postadministration. Compared with traditional surgery under white light, targeted NIRF imaging-guided surgery completely resected endometriotic lesions with a sensitivity of 97.3% and specificity of 77.8%. No obvious toxicity was observed in routine blood tests, serum biochemicals, or histopathology in mice. Conclusions. GnRHa-ICG specifically recognized and localized endometriotic lesions and guided complete resection of lesions with high accuracy.