PLoS ONE (Mar 2011)

Contribution of caspase(s) to the cell cycle regulation at mitotic phase.

  • Toshiaki Hashimoto,
  • Ushio Kikkawa,
  • Shinji Kamada

DOI
https://doi.org/10.1371/journal.pone.0018449
Journal volume & issue
Vol. 6, no. 3
p. e18449

Abstract

Read online

Caspases have been suggested to contribute to not only apoptosis regulation but also non-apoptotic cellular phenomena. Recently, we have reported the involvement of caspase-7 to the cell cycle progression at mitotic phase by knockdown of caspase-7 using small interfering RNAs and short hairpin RNA. Here we showed that chemically synthesized broad-spectrum caspase inhibitors, which have been used to suppress apoptosis, prevented the cell proliferation in a dose-dependent manner, and that the subtype-specific peptide-based caspase inhibitor for caspase-3 and -7, but not for caspase-9, inhibited cell proliferation. It was also indicated that the BIR2 domain of X-linked inhibitor of apoptosis protein, functioning as an inhibitor for caspase-3 and -7, but not the BIR3 domain which plays as a caspase-9 inhibitor, induced cell cycle arrest. Furthermore, flow cytometry revealed that the cells treated with caspase inhibitors arrested at G(2)/M phase. By using HeLa.S-Fucci (fluorescent ubiquitination-based cell cycle indicator) cells, the prevention of the cell proliferation by caspase inhibitors induced cell cycle arrest at mitotic phase accompanying the accumulation of the substrates for APC/C, suggesting the impairment of the APC/C activity at the transition from M to G(1) phases. These results indicate that caspase(s) contribute to the cell cycle regulation at mitotic phase.