Nuclear Materials and Energy (Jun 2023)

Development of continuous V-shaped structure for high heat flux components of flat-type divertor

  • Siqing Feng,
  • Xuebing Peng,
  • Yuntao Song,
  • Peng Liu,
  • Wei Song,
  • Xin Mao,
  • Xinyuan Qian,
  • Muhammad Salman Khan

Journal volume & issue
Vol. 35
p. 101419

Abstract

Read online

The continuous V-shaped structure with hypervapotron for divertor target can improve the cooling performance and detachment in the strike point area. The design and manufacture of this structure has been described in this work. The continuous V-shaped structure in a flat-type divertor is beneficial for divertor detachment because it has a deep slot that can trap neutral particles. The target cooled by hypervapotron is designed to sustain stationary heat flux up to ∼ 10 MW· m−2. The hypervapotron structure is directly connected at the root of the V configuration and expands the potential candidate area of the strike point for better adaptability to different plasma configurations. The simulation results demonstrate that temperature of the structure meets the allowance values of the materials because the strike point hits at the inner tip of V-shaped structure, i.e. the extreme point. The heat-sink composite panel used is made of CuCrZr and 316L stainless steel and is formed by explosive welding. The V-shaped structure is made by bending, machining, and brazing. Finally, three continuous V-shaped structure mockups were fabricated and tested to demonstrate the feasibility of engineering design.

Keywords