Наукові вісті Національного технічного університету України "Київський політехнічний інститут" (Nov 2018)
Features of Structure Formation and Properties of Com¬posite Antifriction Materials for Printing Machines Based on Recovered Wastes
Abstract
Background. Development of the technological measures for creating new antifriction composite materials based on industrial grinding waste of steel 2Х6В8М2К7 with solid lubricant CaF2, and also the technological possibilities expansion of using a wider range of valuable secondary raw materials for the synthesis of qualitative structural materials. Objective. The aim of the paper is to determine the features of structure formation and their influence on the properties of composite antifriction materials based on industrial grinding waste of steel 2Х6В8М2К7 with solid lubricant CaF2 designed for the printing machine’s friction unit in conditions of self-lubrication at speeds up to 750 rpm and loads up to 8.0 MPa in the air. Methods. Development of the recovery technological modes of the industrial grinding waste of steel 2Х6В8М2К7; determination of technological manufacturing operations for new antifriction composites that include mixing of steel powders with solid lubricant, pressing and sintering of composites. The study of the structure formation processes and properties of materials was carried out using optical and electron microscopy methods, standard methods for determining mechanical properties and tests for friction and wear. Results. The influence of the developed manufacturing technology on the structure formation, physicomechanical and tribotechnical properties of materials based on steel 2Х6В8М2К7 grinding waste with solid lubricant CaF2 was determined and grounded, resulting in the formation of complex heterogeneous antifriction material with high functional characteristics. Conclusions. The possibility to control the structure and functional properties of composite antifriction materials based on steel 2Х6В8М2К7 grinding waste with solid lubricant CaF2 for the printing machines’ parts by technological means, selecting the appropriate mark of metal grinding waste depending on the purpose of the part, the solid lubricant quantitative variations, and to apply rational manufacturing technological modes for obtaining a predetermined structure and predicted level of functional properties are grounded.
Keywords