PLoS ONE (Jan 2014)

Identification of transcriptome-derived microsatellite markers and their association with the growth performance of the mud crab (Scylla paramamosain).

  • Hongyu Ma,
  • Wei Jiang,
  • Ping Liu,
  • Nana Feng,
  • Qunqun Ma,
  • Chunyan Ma,
  • Shujuan Li,
  • Yuexing Liu,
  • Zhenguo Qiao,
  • Lingbo Ma

DOI
https://doi.org/10.1371/journal.pone.0089134
Journal volume & issue
Vol. 9, no. 2
p. e89134

Abstract

Read online

Microsatellite markers from a transcriptome sequence library were initially isolated, and their genetic variation was characterized in a wild population of the mud crab (Scylla paramamosain). We then tested the association between these microsatellite markers and the growth performance of S. paramamosain. A total of 129 polymorphic microsatellite markers were identified, with an observed heterozygosity ranging from 0.19 to 1.00 per locus, an expected heterozygosity ranging from 0.23 to 0.96 per locus, and a polymorphism information content (PIC) ranging from 0.21 to 0.95 per locus. Of these microsatellite markers, 30 showed polymorphism in 96 full-sib individuals of a first generation family. Statistical analysis indicated that three microsatellite markers were significantly associated with 12 growth traits of S. paramamosain. Of these three markers, locus Scpa36 was significantly associated with eight growth traits, namely, carapace length, abdomen width (AW), body height (BH), fixed finger length of the claw, fixed finger width of the claw, fixed finger height of the claw, meropodite length of pereiopod 2, and meropodite length of pereiopod 3 (MLP3) (P<0.05). Locus Scpa75 was significantly associated with five growth traits, namely, internal carapace width, AW, carapace width at spine 8, distance between lateral spine 2 (DLS2), and MLP3 (P<0.05). Locus Spm30 was significantly associated with BH, DLS2, and body weight (P<0.05). Further analysis suggested a set of genotypes (BC at Scpa36, BC and BD at Scpa75, and AC at Spm30) that have great potential in the selection of S. paramamosain for growth traits. These findings will facilitate the development of population conservation genetics and molecular marker-assisted selective breeding of S. paramamosain and other closely related species.