Remote Sensing (May 2023)
Annual and Seasonal Trends of Vegetation Responses and Feedback to Temperature on the Tibetan Plateau since the 1980s
Abstract
The vegetation–temperature relationship is crucial in understanding land–atmosphere interactions on the Tibetan Plateau. Although many studies have investigated the connections between vegetation and climate variables in this region using remote sensing technology, there remain notable gaps in our understanding of vegetation–temperature interactions over different timescales. Here, we combined site-level air temperature observations, information from the global inventory modeling and mapping studies (GIMMS) dataset, and moderate-resolution imaging spectroradiometer (MODIS) products to analyze the spatial and temporal patterns of air temperature, vegetation, and land surface temperature (LST) on the Tibetan Plateau at annual and seasonal scales. We achieved these spatiotemporal patterns by using Sen’s slope, sequential Mann–Kendall tests, and partial correlation analysis. The timescale differences of vegetation-induced LST were subsequently discussed. Our results demonstrate that a breakpoint of air temperature change occurred on the Tibetan Plateau during 1994–1998, dividing the study period (1982–2013) into two phases. A more significant greening response of NDVI occurred in the spring and autumn with earlier breakpoints and a more sensitive NDVI response occurred in recent warming phase. Both MODIS and GIMMS data showed a common increase in the normalized difference vegetation index (NDVI) on the Tibetan Plateau for all timescales, while the former had a larger greening area since 2000. The most prominent trends in NDVI and LST were identified in spring and autumn, respectively, and the largest areas of significant variation in NDVI and LST mostly occurred in winter and autumn, respectively. The partial correlation analysis revealed a significant negative impact of NDVI on LST during the annual scale and autumn, and it had a significant positive impact during spring. Our findings improve the general understanding of vegetation–climate relationships at annual and seasonal scales.
Keywords