Journal of Integrative Agriculture (Apr 2024)

Integrating phosphorus management and cropping technology for sustainable maize production

  • Haiqing Gong,
  • Yue Xiang,
  • Jiechen Wu,
  • Laichao Luo,
  • Xiaohui Chen,
  • Xiaoqiang Jiao,
  • Chen Chen

Journal volume & issue
Vol. 23, no. 4
pp. 1369 – 1380

Abstract

Read online

Achieving high maize yields and efficient phosphorus (P) use with limited environmental impacts is one of the greatest challenges in sustainable maize production. Increasing plant density is considered an effective approach for achieving high maize yields. However, the low mobility of P in soils and the scarcity of natural P resources have hindered the development of methods that can simultaneously optimize P use and mitigate the P-related environmental footprint at high plant densities. In this study, meta-analysis and substance flow analysis were conducted to evaluate the effects of different types of mineral P fertilizer on maize yield at varying plant densities and assess the flow of P from rock phosphate mining to P fertilizer use for maize production in China. A significantly higher yield was obtained at higher plant densities than at lower plant densities. The application of single super-phosphate, triple super-phosphate, and calcium magnesium phosphate at high plant densities resulted in higher yields and a smaller environmental footprint than the application of diammonium phosphate and monoammonium phosphate. Our scenario analyses suggest that combining the optimal P type and application rate with a high plant density could increase maize yield by 22%. Further, the P resource use efficiency throughout the P supply chain increased by 39%, whereas the P-related environmental footprint decreased by 33%. Thus, simultaneously optimizing the P type and application rate at high plant densities achieved multiple objectives during maize production, indicating that combining P management with cropping techniques is a practical approach to sustainable maize production. These findings offer strategic, synergistic options for achieving sustainable agricultural development.

Keywords