PLoS Genetics (Jul 2009)

Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling.

  • Srivathsa C Venugopal,
  • Rae-Dong Jeong,
  • Mihir K Mandal,
  • Shifeng Zhu,
  • A C Chandra-Shekara,
  • Ye Xia,
  • Matthew Hersh,
  • Arnold J Stromberg,
  • DuRoy Navarre,
  • Aardra Kachroo,
  • Pradeep Kachroo

DOI
https://doi.org/10.1371/journal.pgen.1000545
Journal volume & issue
Vol. 5, no. 7
p. e1000545

Abstract

Read online

Resistance (R) protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non-race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.