Acta Crystallographica Section E: Crystallographic Communications (Aug 2024)

Pyrazine-bridged polymetallic copper–iridium clusters

  • Ben. J. Tickner,
  • Richard Gammons,
  • Adrian C. Whitwood,
  • Simon B. Duckett

DOI
https://doi.org/10.1107/S2056989024007151
Journal volume & issue
Vol. 80, no. 8
pp. 890 – 893

Abstract

Read online

Single crystals of the molecular compound, {Cu20Ir6Cl8(C21H24N2)6(C4H4N2)3]·3.18CH3OH or [({Cu10Ir3}Cl4(IMes)3(pyrazine))2(pyrazine)]·3.18CH3OH [where IMes is 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene], with a unique heterometallic cluster have been prepared and the structure revealed using single-crystal X-ray diffraction. The molecule is centrosymmetric with two {Cu10Ir3} cores bridged by a pyrazine ligand. The polymetallic cluster contains three stabilizing N-heterocyclic carbenes, four Cl ligands, and a non-bridging pyrazine ligand. Notably, the Cu—Ir core is arranged in an unusual shape containing 13 vertices, 22 faces, and 32 sides. The atoms within the tridecametallic cluster are arranged in four planes, with 2, 4, 4, 3 metals in each plane. Ir atoms are present in alternate planes with an Ir atom featuring in the peripheral bimetallic plane, and two Ir atoms featuring on opposite sides of the non-adjacent tetrametallic plane. The crystal contains two disordered methanol solvent molecules with an additional region of non-modelled electron density corrected for using the SQUEEZE routine in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unmodelled methanol solvent molecule(s).

Keywords