Российский кардиологический журнал (Apr 2020)

Machine learning for predicting the outcomes and risks of cardiovascular diseases in patients with hypertension: results of ESSE-RF in the Primorsky Krai

  • V. A. Nevzorova,
  • N. G. Plekhova,
  • L. G. Priseko,
  • I. N. Chernenko,
  • D. Yu. Bogdanov,
  • M. V. Mokshina,
  • N. V. Kulakova

DOI
https://doi.org/10.15829/1560-4071-2020-3-3751
Journal volume & issue
Vol. 25, no. 3

Abstract

Read online

Aim. To assess the prospects of using artificial intelligence technologies in predicting the outcomes and risks of cardiovascular diseases (CVD) in patients with hypertension (HTN).Material and methods. A software application was created for data mining from respondent profiles in a semi-automatic mode; libraries with data preprocessing were analyzed. We analyzed the main and additional parameters (35) of CVD risk factors in 2131 people as a part of ESSE-RF study (2014-2019). To create a forecasting model, a high-level language Python 2.7 was used using object-oriented programming and exception handling with multithreading support. Using randomization, learning (n=488) and test (n=245) samples were formed, which included data from patients with an established diagnosis of HTN.Results. The prevalence of HTN among subjects was 34,39%. There were following significant factors for predicting CVD: anthropometric parameters, smoking, biochemical profile (total cholesterol, ApoA, ApoB, glucose, D-dimer, C-reactive protein). As a result of a 5-year follow-up, CVD was found in 235 people (32,06%) with HTN and 187 people (13,38%) without HTN; mortality rates were 1,27% in subjects with HTN and 1,12% — without HTN. The absolute mortality risk among participants with HTN (0,037) was significantly higher (p<0,05) than in patients without HTN (0,017). To create a neural network (NN), the basic Sequential model from the Keras library was used. During machine learning, 26 variables important for the CVD development were used as input and 9 neurons — as output, which corresponded to the number of established cardiovascular events. The created NN had a predictive value of up to 97,9%, which exceeded the SCORE value (34,9%).Conclusion. The data obtained indicate the importance of risk factor phenotyping using anthropometric markers and biochemical profile for determining their significance in the top 20 predictors of CVD. The Python-based machine learning provides CVD prediction according to standard risk assessments.

Keywords