Stem Cell Research & Therapy (Aug 2020)

3D co-culture model of endothelial colony-forming cells (ECFCs) reverses late passage adipose-derived stem cell senescence for wound healing

  • Wansheng Hu,
  • Shengqian Zhu,
  • Mimi Lalrimawii Fanai,
  • Jing Wang,
  • Junrong Cai,
  • Jingwei Feng

DOI
https://doi.org/10.1186/s13287-020-01838-w
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Extensive passage of adipose-derived stem cells (ASCs) in vitro leads to loss of function. Endothelial colony-forming cells (ECFCs) can be isolated from adult peripheral blood. A 3D co-culture system may rescue in vitro ASC senescence. Methods A 3D co-culture model was successfully established using hyaluronic acid (HA) gel and a 10:1 ratio of late-passage ASCs and ECFCs. Cell density and culture conditions were optimized. Stem cell phenotype was characterized by flow cytometry. ELISA was used to measure the trophic effect of angiogenic growth factors and compare the effects of these factors between the 3-D co-culture and single-cell culture. Therapeutic potential of ASC/ECFC 3-D co-cultures was evaluated in a mouse chronic injury model. Results Following incubation in a HA substrate 3D co-culture system, ASC morphology, phenotype, secretory profile, and differentiation capacity were restored. The ASC/ECFC co-culture increased the secretion of cytokines, such as hepatocyte growth factor, compared with single-cell 3D culture or monolayer culture. Mice radiation-ulcer wounds treated with ASC/ECFC 3-D co-cultures (spheroids) showed epithelialization and improved healing compared with wounds treated with ASCs or ECFCs alone. Further, transplanted ASC/ECFC spheroids exhibited superior angiogenic potential due to the ability of the ASCs to transdifferentiate into pericytes. Conclusion 3D co-culture of ECFCs and ASCs in vitro restored native ASC properties by reversing cellular senescence and loss of trophic function. Transplant of ASC/ECFC 3D spheroids in vivo demonstrated pro-angiogenic capacity with improved therapeutic potential.

Keywords