Heliyon (Jul 2020)

Improved phenol sequestration from aqueous solution using silver nanoparticle modified Palm Kernel Shell Activated Carbon

  • M.O. Aremu,
  • A.O. Arinkoola,
  • I.A. Olowonyo,
  • K.K. Salam

Journal volume & issue
Vol. 6, no. 7
p. e04492

Abstract

Read online

Modified Palm Kernel Shell Activated Carbon (PKSAC) using silver nanoparticle (Ag-NPs-PKSAC) was investigated on phenol uptake from aqueous solution. Effects of temperature (500–700 °C), time (90–120 min), and alkaline concentration (0.1–0.5 M) were studied on the yield and methylene blue numbers for the synthesis. Effects of initial concentration (100–200 mg/L), agitation (150–250 rpm), contact time (30–120 min), and adsorbent dosage (0.15–0.25 g) were studied in a batch experiment on percentage removal of phenol. The PKS, char, PKSAC and Ag-NPs-PKSAC were characterized using BET, FTIR, SEM, and proximate analyses. The synthesis of PKSAC was optimum at 608 °C, 0.5 M KOH, and carbonization holding time of 60 min. The optimum phenol uptake was 85.64, 90.29 and 91.70% for PKSAC, Ag-NPs-PKSAC, and commercial adsorbent, respectively. The adsorption mechanism of phenol followed the Langmuir isotherm and best described as physio-sorption with pseudo-second-order kinetics. Phenol exhibits high affinity (ΔS° = 0.0079 kJ/mol K) for Ag-NPs-PKSAC with favorable adsorption (ΔG° = -1.551 kJ/mol) at high temperature due to endothermic (ΔH° = 1.072 kJ/mol) nature of the system. The result obtained in this study compared favorably with the literature.

Keywords