JISA (Jurnal Informatika dan Sains) (Dec 2021)

Application of Feature Selection for Identification of Cucumber Leaf Diseases (Cucumis sativa L.)

  • Lalitya Nindita Sahenda,
  • Ahmad Aris Ubaidillah,
  • Zilvanhisna Emka Fitri,
  • Abdul Madjid,
  • Arizal Mujibtamala Nanda Imron

DOI
https://doi.org/10.31326/jisa.v4i2.1046
Journal volume & issue
Vol. 4, no. 2
pp. 173 – 178

Abstract

Read online

According to data from BPS Kabupaten Jember, the amount of cucumber production fluctuated from 2013 to 2017. Some literature also mentions that one of the causes of the amount of cucumber production is disease attacks on these plants. Most of the cucumber plant diseases found in the leaf area such as downy mildew and powdery mildew which are both caused by fungi (fungal diseases). So far, farmers check cucumber plant diseases manually, so there is a lack of accuracy in determining cucumber plant diseases. To help farmers, a computer vision system that is able to identify cucumber diseases automatically will have an impact on the speed and accuracy of handling cucumber plant diseases. This research used 90 training data consisting of 30 healthy leaf data, 30 powdery mildew leaf data and 30 downy mildew leaf data. while for the test data as many as 30 data consisting of 10 data in each class. To get suitable parameters, a feature selection process is carried out on color features and texture features so that suitable parameters are obtained, namely: red color features, texture features consisting of contrast, Inverse Different Moment (IDM) and correlation. The K-Nearest Neighbor classification method is able to classify diseases on cucumber leaves (Cucumis sativa L.) with a training accuracy of 90% and a test accuracy of 76.67% using a variation of the value of K = 7.

Keywords